Bcl-2–Modifying Factor Induces Renal Proximal Tubular Cell Apoptosis in Diabetic Mice
نویسندگان
چکیده
This study investigated the mechanisms underlying tubular apoptosis in diabetes by identifying proapoptotic genes that are differentially upregulated by reactive oxygen species in renal proximal tubular cells (RPTCs) in models of diabetes. Total RNAs isolated from renal proximal tubules (RPTs) of 20-week-old heterozygous db/m+, db/db, and db/db catalase (CAT)-transgenic (Tg) mice were used for DNA chip microarray analysis. Real-time quantitative PCR assays, immunohistochemistry, and mice rendered diabetic with streptozotocin were used to validate the proapoptotic gene expression in RPTs. Cultured rat RPTCs were used to confirm the apoptotic activity and regulation of proapoptotic gene expression. Additionally, studies in kidney tissues from patients with and without diabetes were used to confirm enhanced proapoptotic gene expression in RPTs. Bcl-2-modifying factor (Bmf) was differentially upregulated (P<0.01) in RPTs of db/db mice compared with db/m+ and db/db CAT-Tg mice and in RPTs of streptozotocin-induced diabetic mice in which insulin reversed this finding. In vitro, Bmf cDNA overexpression in rat RPTCs coimmunoprecipated with Bcl-2, enhanced caspase-3 activity, and promoted apoptosis. High glucose (25 mmol/L) induced Bmf mRNA expression in RPTCs, whereas rotenone, catalase, diphenylene iodinium, and apocynin decreased it. Knockdown of Bmf with small interfering RNA reduced high glucose-induced apoptosis in RPTCs. More important, enhanced Bmf expression was detected in RPTs of kidneys from patients with diabetes. These data demonstrate differential upregulation of Bmf in diabetic RPTs and suggest a potential role for Bmf in regulating RPTC apoptosis and tubular atrophy in diabetes.
منابع مشابه
Simultaneous deletion of Bax and Bak is required to prevent apoptosis and interstitial fibrosis in obstructive nephropathy.
Proximal tubular injury and apoptosis are key mediators of the development of kidney fibrosis, a hallmark of chronic kidney disease. However, the molecular mechanism by which tubular apoptotic cell death leads to kidney fibrosis is poorly understood. In the present study, we tested the roles of Bcl-2-associated X (Bax) and Bcl-2 antagonist/killer (Bak), two crucial proteins involved in intrinsi...
متن کاملSecreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney.
Tubular epithelial cell apoptosis contributes to tubulointerstitial fibrosis but its regulation remains unclear. Here, in fibrotic kidney induced by unilateral ureteral obstruction (UUO), we demonstrate that miR-34a is markedly upregulated in tubulointerstitial spaces and microvesicles isolated from obstructed kidney. However, miR-34a is not de novo synthesized by proximal tubular epithelial ce...
متن کاملBax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models
Bax and Bak, two pro-apoptotic Bcl-2 family proteins, have been implicated in acute kidney injury following renal ischemia/reperfusion; however, definitive evidence for a role of these genes in the disease process is lacking. Here we first examined two Bax-deficient mouse models and found that only conditional Bax deletion specifically from proximal tubules could ameliorate ischemic acute kidne...
متن کاملEicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis.
The present study was designed to elucidate a possible mechanism of hyperglycemia-induced tubular injury and to examine a therapeutic potential of dietary eicosapentaenoic acid (EPA) for the prevention of diabetic kidney disease. Utilizing streptozotocin-induced diabetic mice, the extents of albuminuria and histological injuries were monitored at 2 wk after diabetic induction. Reactive oxygen s...
متن کاملInduction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents.
Inhibitors of histone deacetylases, including suberoylanilide hydroxamic acid (SAHA) and Trichostatin A, are a new class of anticancer agents. With potent chemotherapy effects in cancers, these agents are not obviously toxic in normal nonmalignant cells or tissues. However, their toxicity in kidney cells has not been carefully evaluated. Here, we demonstrate a potent apoptosis-inducing activity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012